$4 n-10$

Andreas W.M. Dress ${ }^{1 *}$, Jack Koolen ${ }^{2 \dagger}$, and Vincent Moulton ${ }^{3 *}$
${ }^{1}$ Max Planck Institute for Mathematics in the Sciences, Inselstrasse 22-26, 04103 Leipzig Germany dress@mathematik.uni-bielefeld.de
${ }^{2}$ Division of Applied Mathematics, KAIST, 373-1 Kusongdong, Yusongku, Daejon 305701 Korea
jhk@amath.kaist.ac.kr
${ }^{3}$ The Linnaeus Centre for Bioinformatics, Uppsala University, Box 598, 75124 Uppsala Sweden
vincent.moulton@lcb.uu.se

Received March 19, 2003
AMS Subject Classification: 05D05, 05A99, 92B99

Abstract. We show that the maximal number $K_{2}(n)$ of splits in a 2-compatible split system on an n-set is exactly $4 n-10$, for every $n>3$.

Since $K_{2}(n)=C F_{3}(n) / 2$ where $C F_{3}(n)$ is the maximal number of members in any 3-crossfree collection of (proper) subsets of an n-set, this gives a definitive answer to a question raised in 1979 by A. Karzanov who asked whether $C F_{3}(n)$ is, as a function of n, of type $O(n)$.

Karzanov's question was answered first by P. Pevzner in 1987 who showed $K_{2}(n) \leq 6 n$, a result that was improved by T. Fleiner in 1998 who showed $K_{2}(n) \leq 5 n$.

The argument given in the paper below establishes that the even slightly stronger inequality $K_{2}(n) \leq 4 n-10$ holds for every $n>3$; the identity $K_{2}(n)=4 n-10(n>3)$ then follows in conjunction with a result from a previous paper that implies $K_{2}(n) \geq 4 n-10$.

In that paper, it was also mentioned that - in analogy to well known results regarding maximal weakly compatible split systems - 2-compatible split systems of maximal cardinality $4 n-10$ should be expected to be cyclic. Luckily, our approach here permits us also to corroborate this expectation. As a consequence, it is now possible to generate all 2-compatible split systems on an n-set $(n>3)$ that have maximal cardinality $4 n-10$ (or, equivalently, all 3-cross-free set systems that have maximal cardinality $8 n-20$) in a straight forward, systematic manner.

Keywords: 3-cross-free set systems, k-crossing set systems, laminar sets, cuts, cut multicommodity flow problem, multiflow locking, split systems, 2 -compatible split systems, (in)compatible splits, cyclic split systems, weakly compatible split systems

[^0]
1. Introduction

In this paper, we study a problem raised by A. Karzanov in 1979, viz. his conjecture that the cardinality of any 3-cross-free collection of subsets of an n-set is bounded linearly by n (cf. [4]).

As this conjecture can be rephrased very conveniently using the language of split theory (cf. [1]), we begin by briefly recalling some of the basic terminology of that theory: A split $S=\{A, B\}$ of a set X is a bipartition of X into two sets A, B; in particular, we have $B=\bar{A}:=X-A$. We denote by $\mathbf{S}(X)$ the set of all splits of X; any subset \mathbf{S} of $\mathbf{S}(X)$ is called a split system (defined on X). Two splits S, S^{\prime} of a set X are called compatible if there exist subsets $A \in S$ and $A^{\prime} \in S^{\prime}$ with $A \cap A^{\prime}=\emptyset$, otherwise S and S^{\prime} are called incompatible. We call a split system $\mathbf{S} \subseteq \mathbf{S}(X)$ 2-compatible if it does not contain an incompatible triple of splits, that is, a subset of 3 pairwise incompatible splits. More generally, a split system $\mathbf{S} \subseteq \mathbf{S}(X)$ is defined to be k-compatible if it does not contain a subset of $k+1$ pairwise incompatible splits.

At the end of the seventies, due newly discovered results on multicommodity flow problems such as those appearing in [4,5], it became of increasing interest to determine upper bounds for the cardinality of a k-compatible split system $\mathbf{S} \subseteq \mathbf{S}(X)$, defined on an n-set X. It is well known that every maximal 1-compatible split system contains exactly $2 n-3$ distinct splits, and it was observed by M. Lomonosov that

$$
\# \mathbf{S} \leq n+\frac{k n}{2}+\frac{k n}{3}+\cdots+\frac{k n}{\lfloor n / 2\rfloor}<n\left(1+k \log _{2}(n)\right)
$$

always holds for a k-compatible split system defined on an n-set (see [2] for the simple proof of this inequality).
A. Karzanov conjectured that there is some universal constant c so that $\# \mathbf{S} \leq c n$ holds for any 2-compatible split system \mathbf{S} defined on an n-set X. In [6], P. Pevzner ${ }^{\S}$ showed $\# \mathbf{S} \leq 6 n$, a result that was subsequently improved to $\# \mathbf{S} \leq 5 n$ by T. Fleiner in [3]. All of these results were stated in terms of 3-cross-free families; however, they can easily be translated into the terminology of split systems, and vice-versa.

In [2], a simple construction was given, for each n-set with $n>3$, that yields maximal 2-compatible split systems \mathbf{S} with $\# \mathbf{S}=4 n-10$ that are, in addition, cyclic i.e. there exists a bijection

$$
\phi:[n]:=\{1, \ldots, n\} \rightarrow X \quad(n:=\# X)
$$

such that \mathbf{S} is contained in the split system $\mathbf{S}(\phi)$ consisting of all splits S of the form

$$
\{\{\phi(i), \phi(i+1), \ldots, \phi(j-1)\}, \overline{\{\phi(i), \phi(i+1), \ldots, \phi(j-1)\}}\}
$$

with $1 \leq i<j \leq n$. It was also shown there that every maximal 2-compatible cyclic split system \mathbf{S} can be constructed in this way and, hence, must have cardinality $4 n-$ 10. Based on these observations, it was then conjectured that - in analogy to well known results regarding maximal weakly compatible split systems (cf. [1]) - every

[^1]2-compatible split system of maximal cardinality should be of this form ${ }^{\text {II }}$. And it was observed in this context that indeed - as a consequence of results obtained in [1] this is true in case for $4 \leq \# X \leq 5$ thus "explaining" the formula $4 n-10$ as the "linear extrapolation" of the values obtained for $n=4$ and $n=5$.

The following two theorems establish this conjecture from [2], thus providing in conjunction with results from [2] - a definitive answer to A. Karzanov's question described above:

Theorem 1.1. The cardinality of any 2-compatible split system defined on a set X of cardinality $\# X:=n>3$ is bounded by $4 n-10$.

Theorem 1.2. Every 2-compatible split system \mathbf{S} defined on a set X of cardinality $\# X:=$ $n>3$ is cyclic provided it has maximal cardinality $\# \mathbf{S}=4 n-10$.

Finally, we want to point out that the key fact on which the proof of Theorem 1.1 is based, is the (non-)existence of certain configurations of splits in maximal 2-compatible split-systems (see Section 3). The discovery of these configurations was motivated, in part, by the existence of similar configurations in 3-compatible cyclic split systems (cf. [2, Section 5]).

2. Preliminary Results

We begin this section by introducing some further notation from split theory. Suppose that X is a finite set. For every proper subset A of X, we denote by S_{A} the split $S_{A}:=$ $\{A, \bar{A}\}$, induced by A. Whenever a subset A of X consists of one element $x \in X$ only, we may also write ' x ' instead of ' $\{x\}$ ' as long as no confusion can arise. In particular, we will write \bar{x} instead of $\overline{\{x\}}$ and $S_{x}=\{x, \bar{x}\}$ instead of $S_{\{x\}}=\{\{x\}, \overline{\{x\}}\}$, for every $x \in X$. For every element $x \in X$ and every split $S \in \mathbf{S}(X)$, we denote by $S(x)$ the subset, A or B, in S that contains x, and by $\bar{S}(x)$, we denote its complement $\bar{S}(x):=\overline{S(x)}=X-S(x)$.

Now, given an element $x \in X$, a pair of splits $S_{1}, S_{2} \in \mathbf{S}(X)$ is called an x-pair if $S_{1}(x) \cap S_{2}(x)=\{x\}$ and $S_{1}(x) \cup S_{2}(x)=X$ hold. Note that every x-pair consists of two distinct compatible splits. Moreover, a pair S_{1}, S_{2} of splits from $\mathbf{S}(X)$ forms an x-pair if and only if there exists a split $S=\{A, B\} \in \mathbf{S}(\bar{x})=\mathbf{S}(X-x)$ - uniquely determined by S_{1} and S_{2} - so that

$$
\left\{S_{1}, S_{2}\right\}=\widehat{S}:=\{\{A \cup x, B\},\{A, B \cup x\}\}
$$

holds. Next, given a split system $\mathbf{S} \subseteq \mathbf{S}(X)$ and a subset Y of X, define the restriction $\left.\mathbf{S}\right|_{Y}$ of \mathbf{S} onto Y by

$$
\left.\mathbf{S}\right|_{Y}:=\{\{A, B\} \in \mathbf{S}(Y):\{A, B\}=\{C \cap Y, D \cap Y\} \text { for some }\{C, D\} \in \mathbf{S}\}
$$

and note that, for every $\mathbf{S} \subseteq \mathbf{S}(X)$ and $x \in X$, the number

$$
\#\left(\mathbf{S}-\left\{S_{x}\right\}\right)-\left.\# \mathbf{S}\right|_{\bar{x}}
$$

[^2]coincides exactly with the cardinality $p_{x}(\mathbf{S}):=\# \mathbf{S}^{x}$ of the set \mathbf{S}^{x} consisting of all x-pairs in \mathbf{S}. This follows as $\{A-x, B-x\}$ is a split in $\mathbf{S}(\bar{x})$ for every split $S \in \mathbf{S}(X)-\left\{S_{x}\right\}$, and we have $\{A-x, B-x\}=\left\{A^{\prime}-x, B^{\prime}-x\right\}$ for two distinct splits $\{A, B\},\left\{A^{\prime}, B^{\prime}\right\}$ in $\mathbf{S}(X)$ if and only if these two splits form an x-pair.

Hence, to prove Theorem 1.1, all we need to show is that there exists, for every 2 -compatible split system $\mathbf{S} \subseteq \mathbf{S}(X)$, some $x \in X$ with $p_{x}(\mathbf{S}) \leq 3$ because, by induction with respect to \# X, this would imply

$$
\begin{aligned}
\# \mathbf{S} & \leq \#\left\{S_{x}\right\}+\left.\# \mathbf{S}\right|_{\bar{x}}+p_{x}(\mathbf{S}) \\
& \leq 1+(4(\# X-1)-10)+3 \\
& =4 \# X-10 .
\end{aligned}
$$

Thus, in order to prove Theorem 1.1, we need to study x-pairs in 2 -compatible split systems. To this end, we begin by noting that for any two splits $S, S^{\prime} \in \mathbf{S}(X)$, the following assertions are equivalent:
(i) S and S^{\prime} are incompatible,
(ii) $A \in S$ and $A^{\prime} \in S^{\prime}$ imply $A \cap A^{\prime}, \bar{A} \cap A^{\prime}, A \cap \overline{A^{\prime}}, \bar{A} \cap \overline{A^{\prime}} \neq \emptyset$,
(iii) $A \in S$ and $A^{\prime} \in S^{\prime}$ imply $A \cap A^{\prime} \neq \emptyset$,
(iv) there is some $A \in S$ that is neither contained in - nor contains - any $A^{\prime} \in S^{\prime}$,
(v) no $A \in S$ is either contained in - or contains - any $A^{\prime} \in S^{\prime}$.

Moreover, defining two collections of splits $\mathbf{S}^{\prime}, \mathbf{S}^{\prime \prime} \subseteq \mathbf{S}(X)$ to be (in)compatible if any two splits $S^{\prime}, S^{\prime \prime}$ with $S^{\prime} \in \mathbf{S}^{\prime}$ and $S^{\prime \prime} \in \mathbf{S}^{\prime \prime}$ are (in)compatible, we observe
Lemma 2.1. If $x \in X$, and U and V are two distinct splits from $\mathbf{S}(\bar{x})$, then the two corresponding x-pairs \widehat{U} and \widehat{V} are incompatible if U and V are incompatible while, otherwise, there exists exactly one pair U_{1}, V_{1} of incompatible splits with $U_{1} \in \widehat{U}$ and $V_{1} \in \widehat{V}$.

In particular, every split S in the restriction $\left.\mathbf{S}\right|_{\bar{x}}$ of any 2-compatible split system \mathbf{S} that contains the two x-pairs \widehat{U} and \widehat{V} must be compatible with U or with V.
Proof. The first statement is obvious. To prove the second, assume $U=\{A, B\}, V=$ $\left\{A^{\prime}, B^{\prime}\right\}$, and $A \cap A^{\prime}=\emptyset$. Then, we have $\widehat{U}=\{\{A \cup x, B\},\{A, B \cup x\}\}$ and $\widehat{V}=\left\{\left\{A^{\prime} \cup\right.\right.$ $\left.\left.x, B^{\prime}\right\},\left\{A^{\prime}, B^{\prime} \cup x\right\}\right\}$ and, clearly, of these four splits only $\{A \cup x, B\}$ and $\left\{A^{\prime} \cup x, B^{\prime}\right\}$ are incompatible.

As a consequence of this lemma, we see that two distinct x-pairs can never be compatible; if they are not incompatible, we call them semi-compatible.
Proposition 2.2. Suppose that $\mathbf{S} \subseteq \mathbf{S}(X)$ is a 2-compatible split system, and that \mathcal{U}, \mathcal{V}, $\mathcal{W} \subseteq \mathbf{S}$ are three distinct x-pairs for some $x \in X$. If \mathcal{U} is semi-compatible with \mathcal{V}, and \mathcal{V} is semi-compatible with \mathcal{W}, then \mathcal{U} is semi-compatible with \mathcal{W}.
Proof. Choose splits $U, V, W \in \mathbf{S}(\bar{x})$ with $\mathcal{U}=\widehat{U}, \mathcal{V}=\widehat{V}$, and $\mathcal{W}=\widehat{W}$, and assume that \mathcal{U} and \mathcal{W} are incompatible. Choose $A \in U$ and $A^{\prime} \in V$ with $A \cap A^{\prime}=\emptyset$, and choose $A^{\prime \prime} \in W$ with $A^{\prime \prime} \subseteq A^{\prime}$ or $A^{\prime} \subseteq A^{\prime \prime}$. Then, $A^{\prime} \subseteq A^{\prime \prime}$ must hold because, otherwise, we would have $A^{\prime \prime} \cap A \subseteq A^{\prime} \cap A=\emptyset$. However, in this case, the three splits $S_{A \cup x}=\{A \cup x, \overline{A \cup x}\} \in$ $\mathcal{U}, S_{A^{\prime \prime}}=\left\{A^{\prime \prime}, \overline{A^{\prime \prime}}\right\} \in \mathcal{W}$, and $S_{A^{\prime} \cup x}=\left\{A^{\prime} \cup x, \overline{A^{\prime} \cup x}\right\} \in \mathcal{V}$ would form an incompatible triple of splits in \mathbf{S}.

Proposition 2.2 in turn implies
Proposition 2.3. If $\mathbf{S} \subseteq \mathbf{S}(X)$ is a 2-compatible split system and if $x \in X$ is any element of X, then either there exist exactly two x-pairs that are incompatible, or any two x-pairs are semi-compatible and there exists a sequence $S_{1}=\left\{A_{1}, B_{1}\right\}, S_{2}=\left\{A_{2}, B_{2}\right\}, \ldots, S_{k}=$ $\left\{A_{k}, B_{k}\right\}$ of splits of \bar{x} with $A_{1} \subset A_{2} \subset \cdots \subset A_{k}$ (and hence $B_{1} \supset B_{2} \supset \cdots \supset B_{k}$) so that

$$
\mathbf{S}^{x}=\left\{\widehat{S}_{i}: i=1, \ldots, k\right\}
$$

holds.
Proof. If \mathcal{U}, \mathcal{V}, and \mathcal{W} were three distinct x-pairs from \mathbf{S} so that \mathcal{U} and \mathcal{V} are incompatible, then either \mathcal{V} and \mathcal{W} or \mathcal{U} and \mathcal{W} would have to be incompatible too, in view of Proposition 2.2. So, assume that \mathcal{V} and \mathcal{W} were incompatible. Choose $U_{1} \in \mathcal{U}$ and $W_{1} \in \mathcal{W}$ according to Lemma 2.1 so that U_{1} and W_{1} are incompatible. Then, U_{1}, W_{1}, V would form an incompatible triple of splits in \mathbf{S}, for every split $V \in \mathcal{V}$, which is clearly a contradiction.

So, assume now that all x-pairs in \mathbf{S}^{x} are semi-compatible. All we need to show then is that, given some $A \subseteq \bar{x}$ with $S_{A}, S_{A \cup x} \in \mathbf{S}^{x}$, the set \mathcal{A} of subsets $A^{\prime} \subseteq \bar{x}$ with $\widehat{S}_{A^{\prime}} \in \mathbf{S}^{x}$ and $A^{\prime} \subseteq A$ or $A \subseteq A^{\prime}$ is linearly ordered. If not, there would exist $A_{1}, A_{2} \in \mathcal{A}$ with $A_{1} \cap A_{2} \neq A_{1}, A_{2}$ and either $A_{1}, A_{2} \subset A$ or $A \subset A_{1}, A_{2}$.

In the first case, we must have $A_{1} \cap A_{2}=\emptyset$, and $S_{A_{1} \cup x}=\left\{A_{1} \cup x, \overline{A_{1} \cup x}\right\}, S_{A_{2} \cup x}=$ $\left\{A_{2} \cup x, \overline{A_{2} \cup x}\right\}$ and $S_{A}=\{A, \bar{A}\}$ would form an incompatible triple of splits in \mathbf{S} because $S_{A_{1} \cup x}$ is clearly not compatible with $S_{A_{2} \cup x}$, and A neither contains - nor is contained in - either of $A_{1} \cup x, \overline{A_{1} \cup x}, A_{2} \cup x$, or $\overline{A_{2} \cup x}$.

In the second case, we must have $A_{1} \cup A_{2}=\bar{x}$, and $S_{A_{1}}=\left\{A_{1}, \overline{A_{1}}\right\}, S_{A_{2}}=\left\{A_{2}, \overline{A_{2}}\right\}$, and $S_{A \cup x}=\{A \cup x, \overline{A \cup x}\}$ would form an incompatible triple of splits in \mathbf{S} because, now, $S_{A_{1}}$ and $S_{A_{2}}$ are incompatible and $A \cup x$ neither contains - nor is contained in - either of $A_{1}, \overline{A_{1}}, A_{2}$, or $\overline{A_{2}}$.

It follows from this proposition and the discussion above that no 2-compatible split system $\mathbf{S} \subseteq \mathbf{S}(X)$ with $\# \mathbf{S} \geq 4 \# X-10, \# X \geq 5$, can contain a pair of incompatible x pairs, for any $x \in X$ provided Theorem 1.1 holds for 2-compatible split systems defined on an n-set with $n<\# X$.

3. Proof of Theorem 1.1

It is now straight forward to establish Theorem 1.1 by induction noting that, for obvious reasons, it holds for $4 \leq \# X \leq 5$. So, assume $\# X>5$ and that our theorem holds for 2-compatible split systems defined on an n-set with $n<\# X$. We consider quadruples x, A, B, C consisting of an element $x \in X$ and a partition $\{A, B, C\}$ of \bar{x} into three disjoint, non-empty sets so that $S_{A \cup x}, S_{A \cup B}=S_{C \cup x}$, and $S_{A \cup B \cup x}=S_{C}$ all belong to \mathbf{S}. Clearly, such quadruples must exist in case $\# \mathbf{S} \geq 4 \# X-10$, because any pair $\left\{\widehat{A_{1}, B_{1}}\right\}$ and $\left\{\widehat{A_{2}, B_{2}}\right\}$ of semi-compatible x-pairs $\left\{\widehat{A_{1}, B_{1}}\right\},\left\{\widehat{A_{2}, B_{2}}\right\} \in \mathbf{S}^{x}$ with, say, $A_{1} \subset A_{2}$ gives rise to such a quadruple, viz. $x, A_{1}, A_{2}-A_{1}, B_{2}$.

Among all such quadruples, choose one, say x_{0}, A_{0}, B_{0}, and C_{0}, for which C_{0} is maximal.

Note - for further use in the next section - that $2 \# C_{0} \geq \# X-1$ must hold in case $\# \mathbf{S} \geq 4 \# X-10$ because, given any triple $S_{1}=\left\{A_{1}, B_{1}\right\}, S_{2}=\left\{A_{2}, B_{2}\right\}$, and $S_{3}=$ $\left\{A_{3}, B_{3}\right\}$ of $\overline{x_{0}}$-splits with $A_{1} \subset A_{2} \subset A_{3}$ and $\widehat{S_{1}}, \widehat{S_{2}}, \widehat{S_{3}} \in \mathbf{S}^{x_{0}}, A_{2}$ as well as B_{2} could serve as C_{0} and, because $\# A_{2}+\# B_{2}=\# X-1$, the larger one of these two candidates for C_{0} must have cardinality at least $\frac{1}{2}(\# X-1)$. So, the maximal C_{0} must also have at least this cardinality that, in view of $\# X>5$, is at least $2 \frac{1}{2}$. So, $\# C_{0}>2$ must hold.

Next, consider an arbitrary element $a_{0} \in A_{0}$. Choose $S_{1}=\left\{A_{1}, B_{1}\right\}, S_{2}=\left\{A_{2}, B_{2}\right\}$, $\ldots, S_{k}=\left\{A_{k}, B_{k}\right\}$ in $\mathbf{S}\left(\overline{a_{0}}\right)$ with $A_{1} \subset A_{2} \subset \cdots \subset A_{k}$ and

$$
\mathbf{S}^{a_{0}}=\left\{\widehat{S}_{i}: i=1, \ldots, k\right\} .
$$

Then all we need to establish is that $k \leq 3$ must hold.
To this end, we observe first that $B_{i} \cap\left(A_{0} \cup B_{0} \cup x_{0}\right) \neq \emptyset$ must hold for all $i=1, \ldots, k$ because, otherwise, we would have $B_{i} \subseteq C_{0}$ and

$$
A_{0} \cup B_{0} \cup x_{0}=\overline{C_{0}} \subseteq \overline{B_{i}}=a_{0} \cup A_{i},
$$

that is, $A_{0} \subseteq a_{0} \cup A_{i}, B_{0} \subseteq A_{i}$, and $x_{0} \in A_{i}$; so the three splits

$$
S_{A_{i}}=\left\{A_{i}, B_{i} \cup a_{0}\right\}, S_{A_{0} \cup B_{0}}=\left\{A_{0} \cup B_{0}, C_{0} \cup x_{0}\right\}, S_{A_{0} \cup x_{0}}=\left\{A_{0} \cup x_{0}, B_{0} \cup C_{0}\right\}
$$

would form an incompatible triple of splits in \mathbf{S} in view of

$$
\begin{gathered}
B_{0} \subseteq A_{i} \cap\left(A_{0} \cup B_{0}\right), \\
x_{0} \in A_{i} \cap\left(C_{0} \cup x_{0}\right), \\
a_{0} \in\left(B_{i} \cup a_{0}\right) \cap\left(A_{0} \cup B_{0}\right), \\
B_{i} \subseteq\left(B_{i} \cup a_{0}\right) \cap\left(C_{0} \cup x_{0}\right), \\
x_{0} \in A_{i} \cap\left(A_{0} \cup x_{0}\right), \\
B_{0} \subseteq A_{i} \cap\left(B_{0} \cup C_{0}\right), \\
a_{0} \in\left(B_{i} \cup a_{0}\right) \cap\left(A_{0} \cup x_{0}\right),
\end{gathered}
$$

and

$$
B_{i} \subseteq\left(B_{i} \cup a_{0}\right) \cap\left(B_{0} \cup C_{0}\right)
$$

So, we must have

$$
B_{i} \cap\left(A_{0} \cup B_{0} \cup x_{0}\right) \neq \emptyset
$$

for all $i=1, \ldots, k$. By symmetry, we must also have

$$
A_{i} \cap\left(A_{0} \cup B_{0} \cup x_{0}\right) \neq \emptyset
$$

for all $i=1, \ldots, k$.
Now, if $B_{k-1} \cap C_{0}=\emptyset$ were to hold, the quadruple $a_{0}, B_{k}, B_{k-1} \cap A_{k}, A_{k-1}$ would form a quadruple of the kind considered above, with $C_{0} \subseteq A_{k-1}$. So, by our choice of C_{0}, we must have $A_{k-1}=C_{0}$ or $B_{k-1} \cap C_{0} \neq \emptyset$. However, if $A_{k-1}=C_{0}$, then $S_{A_{k-1} \cup a_{0}}=\left\{C_{0} \cup\right.$
$\left.a_{0}, x_{0} \cup\left(A_{0}-a_{0}\right) \cup B_{0}\right\}, S_{C_{0} \cup x_{0}}=\left\{C_{0} \cup x_{0}, A_{0} \cup B_{0}\right\}$, and $S_{A_{0} \cup x_{0}}=\left\{A_{0} \cup x_{0}, B_{0} \cup C_{0}\right\}$ would form an incompatible triple of splits in \mathbf{S}. So, we must have $B_{k-1} \cap C_{0} \neq \emptyset$ and, hence, $B_{i} \cap C_{0} \neq \emptyset$ for all $i=1, \ldots, k-1$. By symmetry, also $A_{2} \cap C_{0} \neq \emptyset$ must hold and, hence, $A_{i} \cap C_{0} \neq \emptyset$ for all $i=2, \ldots, k$.

Finally, we note that $i \in\{2, \ldots, k\}$ implies $A_{i-1} \cap C_{0}=\emptyset$ or $B_{i} \cap C_{0}=\emptyset$ because the three splits

$$
\begin{aligned}
S_{B_{i-1}} & =S_{A_{i-1} \cup a_{0}}=\left\{A_{i-1} \cup a_{0}, B_{i-1}\right\}, \\
S_{A_{i}} & =S_{B_{i} \cup a_{0}}=\left\{A_{i}, B_{i} \cup a_{0}\right\},
\end{aligned}
$$

and

$$
S_{C_{0}}=\left\{C_{0}, A_{0} \cup B_{0} \cup x_{0}\right\}
$$

would form an incompatible triple. In view of $A_{2} \cap C_{0} \neq \emptyset$ and $B_{k-1} \cap C_{0} \neq \emptyset$, this implies $B_{3} \cap C_{0}=\emptyset$ as well as $A_{k-2} \cap C_{0}=\emptyset$ and hence, in particular, $k \leq 3$ as claimed.

4. Proof of Theorem 1.2

To establish Theorem 1.2, we also proceed by induction with respect to $\# X$, noting as above that - in view of the results obtained in [1] - Theorem 1.2 clearly holds in case $4 \leq \# X \leq 5$. So, using the notations and arguments from the previous section, we must have $k=3, B_{3} \cap C_{0}=\emptyset$, and $A_{1} \cap C_{0}=\emptyset$. Moreover, assuming that - without loss of generality - $x_{0} \in A_{2}$ holds, we may assume that - with $n:=\# X-1 \geq 5$ - we have $\overline{a_{0}}=[n]=\{1, \ldots, n\}$ and $\mathbf{S}^{\prime}:=\left.\mathbf{S}\right|_{\overline{a_{0}}}$ is a subset of

$$
\mathbf{S}^{*}:=\{\{\{i, i+1, \ldots, j-1\},[n]-\{i, i+1, \ldots, j-1\}\}: 1 \leq i<j \leq n\}
$$

that is, it is a subset of the standard cyclic split system on $\{1, \ldots, n\}$.
In addition, we may assume that

$$
x_{0}=n, A_{0}-a_{0}=\left\{1, \ldots, i_{0}-1\right\}, B_{0}=\left\{i_{0}, \ldots, j_{0}-1\right\}, C_{0}=\left\{j_{0}, \ldots, n-1\right\}
$$

and

$$
B_{2}=\left\{l_{0}, l_{0}+1, \ldots, k_{0}-1\right\}
$$

holds for some $i_{0}, j_{0}, l_{0}, k_{0} \in\{1, \ldots, n\}$ with $1 \leq i_{0}<j_{0}<n-1$ and $1 \leq l_{0}<j_{0}<$ $k_{0}<n$. And, using these notations, we must also have

$$
A_{1} \subseteq A_{2} \cap \overline{C_{0}}=\{n\} \cup\left\{1, \ldots, l_{0}-1\right\}
$$

and

$$
B_{3} \subseteq B_{2} \cap \overline{C_{0}}=\left\{l_{0}, \ldots, j_{0}-1\right\}
$$

We now recall from [2] that every cyclic 2-compatible split system $\mathbf{S}^{\prime} \subseteq \mathbf{S}^{*}$ with $\mathbf{S}^{\prime}=$ $4 n-10$ contains all splits of the form $\{\{i, i+1\},[n]-\{i, i+1\}\}(i=1, \ldots, n)$ and that every set C with $\{C,[n]-C\} \in \mathbf{S}^{\prime}$ and $\# C \geq 3$ contains a subset C^{\prime} with $\# C^{\prime}=3$ and $\left\{C^{\prime},[n]-C^{\prime}\right\} \in \mathbf{S}^{\prime}$.

Consequently, there is some $m_{0} \in C_{0}$ with $m_{0}+2 \leq n-1$ and the splits

$$
\begin{gathered}
\left\{\left\{m_{0}, m_{0}+1, m_{0}+2\right\},[n]-\left\{m_{0}, m_{0}+1, m_{0}+2\right\}\right\}, \\
\left\{\left\{m_{0}, m_{0}+1\right\},[n]-\left\{m_{0}, m_{0}+1\right\}\right\},
\end{gathered}
$$

and

$$
\left\{\left\{m_{0}+1, m_{0}+2\right\},[n]-\left\{m_{0}+1, m_{0}+2\right\}\right\}
$$

are all contained in \mathbf{S}^{\prime}. Clearly, the corresponding splits in \mathbf{S} all must be of the form $S_{\left\{m_{0}, m_{0}+1, m_{0}+2\right\}}, S_{\left\{m_{0}, m_{0}+1\right\}}$, and $S_{\left\{m_{0}+1, m_{0}+2\right\}}$ because every split of the form $S_{C \cup a_{0}}$ ($0 \subset C \subseteq C_{0}$) forms an incompatible triple of splits together with $S_{A_{1} \cup a_{0}}$ and $S_{B_{3} \cup a_{0}}$ in view of $B_{3} \cap C_{0}=\emptyset$ and $A_{1} \cap C_{0}=\emptyset$. This, however, provides us with a quadruple $m_{0},\left\{m_{0}+1\right\},\left\{m_{0}+2\right\}, X-\left\{m_{0}, m_{0}+1, m_{0}+2\right\}$ of the kind considered in the beginning of Section 3 and, hence, it implies $\# A_{0}=\# B_{0}=1$, that is, $A_{0}=\left\{a_{0}\right\}$, $i_{0}=1, j_{0}=2, l_{0}=1, A_{1}=\{n\}$, and $B_{0}=B_{3}=\{1\}$.

With $a_{0}:=0$, it is now easy to see that \mathbf{S} must be contained in the cyclic split system

$$
\{\{\{i, i+1, \ldots, j-1\},\{0, \ldots, i-1\} \cup\{j, \ldots, n\}\}: 0 \leq i<j \leq n\} .
$$

Indeed, both of the two extensions of $\left\{A_{1}, B_{1}\right\},\left\{A_{2}, B_{2}\right\}$, and $\left\{A_{3}, B_{3}\right\}$ clearly belong to this split system in view of $n \in A_{1} \subseteq A_{2} \subseteq A_{3}$ and $1 \in B_{3} \subseteq B_{2} \subseteq B_{1}$. And the unique extension $S \in \mathbf{S}$ of every other split

$$
\{\{i, i+1, \ldots, j-1\},\{[n]-\{i, i+1, \ldots, j-1\}\} \quad(1 \leq i<j \leq n)
$$

in \mathbf{S}^{\prime} must also be of this form: This is trivially so in case $i=1$. And in case $i>1$, we cannot have

$$
\{\{0\} \cup\{i, i+1, \ldots, j-1\},[n]-\{i, i+1, \ldots, j-1\}\} \in \mathbf{S}
$$

because this split forms an incompatible triple together with

$$
\{\{0,1\},\{2, \ldots, n\}\}=S_{A_{0} \cup B_{0}}
$$

and

$$
\{\{1, \ldots, n-1\},\{n, 0\}\}=S_{A_{0} \cup x_{0}}
$$

in view of $2 \leq i \leq n-1$,

$$
0, i \in\{0\} \cup\{i, i+1, \ldots, j-1\}
$$

and

$$
1, n \in[n]-\{i, i+1, \ldots, j-1\} .
$$

Acknowledgments. The authors would like to thank both A. Karzanov and P. Pevzner for helpful comments and suggestions.

References

1. H.-J. Bandelt and A. Dress, A canonical decomposition theory for metrics on a finite set, Adv. Math. 92 (1992) 47-105.
2. A. Dress, M. Klucznik, J. Koolen, and V. Moulton, $\mathbf{2 n k}$ - $\binom{\mathbf{k}+\mathbf{1}}{\mathbf{2}}$: A note on extremal combinatorics of cyclic split systems, Sém. Lothar. Combin. 47 (2001) B47b.
3. T. Fleiner, The size of 3-cross-free families, Combinatorica 21 (2001) 445-448.
4. A. Karzanov, Combinatorial methods to solve cut-determined multiflow problems, In: Combinatorial Methods for Flow Problems, no.3, A. Karzanov, Ed., Vsesoyuz. Nauchno-Issled. Inst. Sistem. Issled., Moscow, 1979, pp. 6-69 (in Russian).
5. A. Karzanov and P. Pevzner, A description of the class of cut-non-determined maximum multiflow problems, In: Combinatorial Methods for Flow Problems, no. 3 A. Karzanov, Ed., Vsesoyuz. Nauchno-Issled. Inst. Sistem. Issled., Moscow, 1979, pp. 70-81 (in Russian).
6. P. Pevzner, Non-3-crossing families and multicommodity flows, Amer. Math. Soc. Transl. Ser. 2, 158 (1994) 201-206. (Translated from: P. Pevzner, Linearity of the cardinality of 3 -cross free sets, In: Problems of Discrete Optimization and Methods for Their Solution A. Fridman, Ed., Moscow, 1987, pp. 136-142 (in Russian)).

[^0]: * This work carried out whilst the author was a Distinguished Visiting Professor at the Dept. of Chem. Eng., City College, CUNY, New York.
 ${ }^{\dagger}$ This research was done while the author was at FSPM-Strukturbildungsprozesse, University of Bielefeld, Germany, and CWI, Amsterdam, Netherlands, and also during a visit to Mid Sweden University, with the partial support of The Swedish Resaerch Council.
 * Communicating author. The author thanks the Swedish Research Council for its support.

[^1]: § In [3], a possible flaw in Pevzner's argument - probably due to poor translation - is pointed
 out. out.

[^2]: ${ }^{{ }^{I}} \mathrm{~A}$ split system $\mathbf{S} \subseteq \mathbf{S}(X)$ is called weakly compatible if there exist no four elements $x_{0}, x_{1}, x_{2}, x_{3} \in X$ and three splits $S_{1}, S_{2}, S_{3} \in \mathbf{S}$ with " $S_{i}\left(x_{0}\right)=S_{i}\left(x_{j}\right) \Longleftrightarrow i=j$ " for all $i, j \in\{1,2,3\}$.

