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Abstract. We show that the maximal number K2(n) of splits in a 2-compatible split system on
an n-set is exactly 4n−10, for every n > 3.

Since K2(n) = CF3(n)/2 where CF3(n) is the maximal number of members in any 3-cross-
free collection of (proper) subsets of an n-set, this gives a definitive answer to a question raised
in 1979 by A. Karzanov who asked whether CF3(n) is, as a function of n, of type O(n).

Karzanov’s question was answered first by P. Pevzner in 1987 who showed K2(n) ≤ 6n, a
result that was improved by T. Fleiner in 1998 who showed K2(n) ≤ 5n.

The argument given in the paper below establishes that the even slightly stronger inequality
K2(n) ≤ 4n − 10 holds for every n > 3; the identity K2(n) = 4n− 10 (n > 3) then follows in
conjunction with a result from a previous paper that implies K2(n) ≥ 4n−10.

In that paper, it was also mentioned that — in analogy to well known results regarding
maximal weakly compatible split systems — 2-compatible split systems of maximal cardinality
4n−10 should be expected to be cyclic. Luckily, our approach here permits us also to corroborate
this expectation. As a consequence, it is now possible to generate all 2-compatible split systems
on an n-set (n > 3) that have maximal cardinality 4n− 10 (or, equivalently, all 3-cross-free set
systems that have maximal cardinality 8n−20) in a straight forward, systematic manner.
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1. Introduction

In this paper, we study a problem raised by A. Karzanov in 1979, viz. his conjecture that
the cardinality of any 3-cross-free collection of subsets of an n-set is bounded linearly
by n (cf. [4]).

As this conjecture can be rephrased very conveniently using the language of split
theory (cf. [1]), we begin by briefly recalling some of the basic terminology of that
theory: A split S = {A, B} of a set X is a bipartition of X into two sets A, B; in particular,
we have B = A := X −A. We denote by S(X) the set of all splits of X ; any subset S
of S(X) is called a split system (defined on X). Two splits S, S′ of a set X are called
compatible if there exist subsets A ∈ S and A′ ∈ S′ with A∩A′ = /0, otherwise S and
S′ are called incompatible. We call a split system S ⊆ S(X) 2-compatible if it does
not contain an incompatible triple of splits, that is, a subset of 3 pairwise incompatible
splits. More generally, a split system S ⊆ S(X) is defined to be k-compatible if it does
not contain a subset of k +1 pairwise incompatible splits.

At the end of the seventies, due newly discovered results on multicommodity flow
problems such as those appearing in [4,5], it became of increasing interest to determine
upper bounds for the cardinality of a k-compatible split system S ⊆ S(X), defined on an
n-set X . It is well known that every maximal 1-compatible split system contains exactly
2n−3 distinct splits, and it was observed by M. Lomonosov that

#S ≤ n+
kn
2

+
kn
3

+ · · ·+
kn

bn/2c
< n(1+ k log2(n))

always holds for a k-compatible split system defined on an n-set (see [2] for the simple
proof of this inequality).

A. Karzanov conjectured that there is some universal constant c so that #S ≤ cn
holds for any 2-compatible split system S defined on an n-set X . In [6], P. Pevzner§

showed #S ≤ 6n, a result that was subsequently improved to #S ≤ 5n by T. Fleiner
in [3]. All of these results were stated in terms of 3-cross-free families; however, they
can easily be translated into the terminology of split systems, and vice-versa.

In [2], a simple construction was given, for each n-set with n > 3, that yields max-
imal 2-compatible split systems S with #S = 4n− 10 that are, in addition, cyclic i.e.
there exists a bijection

φ : [n] := {1, . . . , n}→ X (n := #X)

such that S is contained in the split system S(φ) consisting of all splits S of the form

{{φ(i), φ(i+1), . . . , φ( j−1)}, {φ(i), φ(i+1), . . . , φ( j−1)}},

with 1 ≤ i < j ≤ n. It was also shown there that every maximal 2-compatible cyclic
split system S can be constructed in this way and, hence, must have cardinality 4n−
10. Based on these observations, it was then conjectured that — in analogy to well
known results regarding maximal weakly compatible split systems (cf. [1]) — every

§ In [3], a possible flaw in Pevzner’s argument — probably due to poor translation — is pointed
out.
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2-compatible split system of maximal cardinality should be of this form¶. And it was
observed in this context that indeed — as a consequence of results obtained in [1] —
this is true in case for 4 ≤ #X ≤ 5 thus “explaining” the formula 4n−10 as the “linear
extrapolation” of the values obtained for n = 4 and n = 5.

The following two theorems establish this conjecture from [2], thus providing —
in conjunction with results from [2] — a definitive answer to A. Karzanov’s question
described above:

Theorem 1.1. The cardinality of any 2-compatible split system defined on a set X of
cardinality #X := n > 3 is bounded by 4n−10.

Theorem 1.2. Every 2-compatible split system S defined on a set X of cardinality #X :=
n > 3 is cyclic provided it has maximal cardinality #S = 4n−10.

Finally, we want to point out that the key fact on which the proof of Theorem 1.1 is
based, is the (non-)existence of certain configurations of splits in maximal 2-compatible
split-systems (see Section 3). The discovery of these configurations was motivated, in
part, by the existence of similar configurations in 3-compatible cyclic split systems
(cf. [2, Section 5]).

2. Preliminary Results

We begin this section by introducing some further notation from split theory. Suppose
that X is a finite set. For every proper subset A of X , we denote by SA the split SA :=
{A,A}, induced by A. Whenever a subset A of X consists of one element x ∈ X only, we
may also write ‘x’ instead of ‘{x}’ as long as no confusion can arise. In particular, we
will write x instead of {x} and Sx = {x, x} instead of S{x} = {{x}, {x}}, for every x∈ X .
For every element x ∈ X and every split S ∈ S(X), we denote by S(x) the subset, A or B,
in S that contains x, and by S(x), we denote its complement S(x) := S(x) = X −S(x).

Now, given an element x ∈ X , a pair of splits S1, S2 ∈ S(X) is called an x-pair if
S1(x)∩S2(x) = {x} and S1(x)∪S2(x) = X hold. Note that every x-pair consists of two
distinct compatible splits. Moreover, a pair S1, S2 of splits from S(X) forms an x-pair
if and only if there exists a split S = {A, B} ∈ S(x) = S(X −x) — uniquely determined
by S1 and S2 — so that

{S1, S2} = Ŝ := {{A∪ x, B}, {A, B∪ x}}

holds. Next, given a split system S ⊆ S(X) and a subset Y of X , define the restriction
S|Y of S onto Y by

S|Y := {{A, B} ∈ S(Y ) : {A, B} = {C∩Y, D∩Y} for some {C, D} ∈ S},

and note that, for every S ⊆ S(X) and x ∈ X , the number

#(S−{Sx})−#S|x
¶ A split system S ⊆ S(X) is called weakly compatible if there exist no four elements x0, x1, x2, x3 ∈ X and

three splits S1, S2, S3 ∈ S with “Si(x0) = Si(x j) ⇐⇒ i = j” for all i, j ∈ {1, 2, 3}.
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coincides exactly with the cardinality px(S) := #Sx of the set Sx consisting of all x-pairs
in S. This follows as {A− x, B− x} is a split in S(x) for every split S ∈ S(X)−{Sx},
and we have {A− x, B− x}= {A′− x, B′− x} for two distinct splits {A, B},{A′, B′} in
S(X) if and only if these two splits form an x-pair.

Hence, to prove Theorem 1.1, all we need to show is that there exists, for every
2-compatible split system S ⊆ S(X), some x ∈ X with px(S) ≤ 3 because, by induction
with respect to #X , this would imply

#S ≤ #{Sx}+#S|x + px(S)

≤ 1+(4(#X −1)−10)+3

= 4#X −10.

Thus, in order to prove Theorem 1.1, we need to study x-pairs in 2-compatible
split systems. To this end, we begin by noting that for any two splits S, S′ ∈ S(X), the
following assertions are equivalent:

(i) S and S′ are incompatible,
(ii) A ∈ S and A′ ∈ S′ imply A∩A′, A∩A′, A∩A′, A∩A′ 6= /0,

(iii) A ∈ S and A′ ∈ S′ imply A∩A′ 6= /0,
(iv) there is some A ∈ S that is neither contained in — nor contains — any A′ ∈ S′,
(v) no A ∈ S is either contained in — or contains — any A′ ∈ S′.

Moreover, defining two collections of splits S′, S′′ ⊆ S(X) to be (in)compatible if
any two splits S′, S′′ with S′ ∈ S′ and S′′ ∈ S′′ are (in)compatible, we observe

Lemma 2.1. If x ∈ X, and U and V are two distinct splits from S(x), then the two
corresponding x-pairs Û and V̂ are incompatible if U and V are incompatible while,
otherwise, there exists exactly one pair U1, V1 of incompatible splits with U1 ∈ Û and
V1 ∈ V̂ .

In particular, every split S in the restriction S|x of any 2-compatible split system S
that contains the two x-pairs Û and V̂ must be compatible with U or with V .

Proof. The first statement is obvious. To prove the second, assume U = {A, B}, V =
{A′, B′}, and A∩A′ = /0. Then, we have Û = {{A∪ x, B},{A, B∪ x}} and V̂ = {{A′∪
x, B′},{A′, B′∪x}} and, clearly, of these four splits only {A∪x, B} and {A′∪x, B′} are
incompatible.

As a consequence of this lemma, we see that two distinct x-pairs can never be com-
patible; if they are not incompatible, we call them semi-compatible.

Proposition 2.2. Suppose that S ⊆ S(X) is a 2-compatible split system, and that U, V ,
W ⊆ S are three distinct x-pairs for some x ∈ X. If U is semi-compatible with V , and
V is semi-compatible with W , then U is semi-compatible with W .

Proof. Choose splits U, V, W ∈ S(x) with U = Û , V = V̂ , and W = Ŵ , and assume
that U and W are incompatible. Choose A ∈U and A′ ∈V with A∩A′ = /0, and choose
A′′ ∈W with A′′ ⊆A′ or A′⊆A′′. Then, A′⊆A′′ must hold because, otherwise, we would
have A′′∩A ⊆ A′∩A = /0. However, in this case, the three splits SA∪x = {A∪x, A∪ x} ∈
U, SA′′ = {A′′, A′′} ∈ W , and SA′∪x = {A′∪x, A′∪ x} ∈ V would form an incompatible
triple of splits in S.
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Proposition 2.2 in turn implies

Proposition 2.3. If S ⊆ S(X) is a 2-compatible split system and if x ∈ X is any element
of X, then either there exist exactly two x-pairs that are incompatible, or any two x-pairs
are semi-compatible and there exists a sequence S1 = {A1, B1}, S2 = {A2, B2}, . . . , Sk =
{Ak, Bk} of splits of x with A1 ⊂ A2 ⊂ ·· · ⊂ Ak (and hence B1 ⊃ B2 ⊃ ·· · ⊃ Bk) so that

Sx = {Ŝi : i = 1, . . . , k}

holds.

Proof. If U,V , and W were three distinct x-pairs from S so that U and V are incom-
patible, then either V and W or U and W would have to be incompatible too, in view
of Proposition 2.2. So, assume that V and W were incompatible. Choose U1 ∈ U and
W1 ∈ W according to Lemma 2.1 so that U1 and W1 are incompatible. Then, U1, W1, V
would form an incompatible triple of splits in S, for every split V ∈ V , which is clearly
a contradiction.

So, assume now that all x-pairs in Sx are semi-compatible. All we need to show
then is that, given some A ⊆ x with SA, SA∪x ∈ Sx, the set A of subsets A′ ⊆ x with
ŜA′ ∈ Sx and A′ ⊆ A or A ⊆ A′ is linearly ordered. If not, there would exist A1, A2 ∈ A
with A1 ∩A2 6= A1, A2 and either A1, A2 ⊂ A or A ⊂ A1, A2.

In the first case, we must have A1 ∩A2 = /0, and SA1∪x = {A1 ∪ x, A1 ∪ x}, SA2∪x =
{A2 ∪ x, A2 ∪ x} and SA = {A, A} would form an incompatible triple of splits in S be-
cause SA1∪x is clearly not compatible with SA2∪x, and A neither contains — nor is con-
tained in — either of A1 ∪ x, A1 ∪ x, A2 ∪ x, or A2 ∪ x.

In the second case, we must have A1∪A2 = x, and SA1 = {A1, A1}, SA2 = {A2, A2},
and SA∪x = {A∪x, A∪ x} would form an incompatible triple of splits in S because, now,
SA1 and SA2 are incompatible and A∪x neither contains — nor is contained in — either
of A1, A1, A2, or A2.

It follows from this proposition and the discussion above that no 2-compatible split
system S ⊆ S(X) with #S ≥ 4#X − 10, #X ≥ 5, can contain a pair of incompatible x-
pairs, for any x ∈ X provided Theorem 1.1 holds for 2-compatible split systems defined
on an n-set with n < #X .

3. Proof of Theorem 1.1

It is now straight forward to establish Theorem 1.1 by induction noting that, for obvi-
ous reasons, it holds for 4 ≤ #X ≤ 5. So, assume #X > 5 and that our theorem holds
for 2-compatible split systems defined on an n-set with n < #X . We consider quadru-
ples x, A, B, C consisting of an element x ∈ X and a partition {A, B, C} of x into three
disjoint, non-empty sets so that SA∪x, SA∪B = SC∪x, and SA∪B∪x = SC all belong to S.
Clearly, such quadruples must exist in case #S ≥ 4#X −10, because any pair ̂{A1, B1}

and ̂{A2, B2} of semi-compatible x-pairs ̂{A1, B1}, ̂{A2, B2} ∈ Sx with, say, A1 ⊂ A2
gives rise to such a quadruple, viz. x, A1, A2 −A1, B2.

Among all such quadruples, choose one, say x0, A0, B0, and C0, for which C0 is
maximal.
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Note — for further use in the next section — that 2#C0 ≥ #X − 1 must hold in
case #S ≥ 4#X −10 because, given any triple S1 = {A1, B1}, S2 = {A2, B2}, and S3 =

{A3, B3} of x0-splits with A1 ⊂ A2 ⊂ A3 and Ŝ1, Ŝ2, Ŝ3 ∈ Sx0 , A2 as well as B2 could
serve as C0 and, because #A2 +#B2 = #X −1, the larger one of these two candidates for
C0 must have cardinality at least 1

2 (#X −1). So, the maximal C0 must also have at least
this cardinality that, in view of #X > 5, is at least 2 1

2 . So, #C0 > 2 must hold.
Next, consider an arbitrary element a0 ∈ A0. Choose S1 = {A1, B1}, S2 = {A2, B2},

. . . , Sk = {Ak, Bk} in S(a0) with A1 ⊂ A2 ⊂ ·· · ⊂ Ak and

Sa0 = {Ŝi : i = 1, . . . , k}.

Then all we need to establish is that k ≤ 3 must hold.
To this end, we observe first that Bi∩(A0∪B0∪x0) 6= /0 must hold for all i = 1, . . . , k

because, otherwise, we would have Bi ⊆C0 and

A0 ∪B0 ∪ x0 = C0 ⊆ Bi = a0 ∪Ai,

that is, A0 ⊆ a0 ∪Ai, B0 ⊆ Ai, and x0 ∈ Ai; so the three splits

SAi = {Ai, Bi ∪a0}, SA0∪B0 = {A0∪B0, C0 ∪ x0}, SA0∪x0 = {A0 ∪ x0, B0 ∪C0}

would form an incompatible triple of splits in S in view of

B0 ⊆ Ai ∩ (A0 ∪B0),

x0 ∈ Ai ∩ (C0 ∪ x0),

a0 ∈ (Bi ∪a0)∩ (A0 ∪B0),

Bi ⊆ (Bi ∪a0)∩ (C0 ∪ x0),

x0 ∈ Ai ∩ (A0 ∪ x0),

B0 ⊆ Ai ∩ (B0 ∪C0),

a0 ∈ (Bi ∪a0)∩ (A0∪ x0),

and
Bi ⊆ (Bi ∪a0)∩ (B0 ∪C0).

So, we must have
Bi ∩ (A0 ∪B0 ∪ x0) 6= /0

for all i = 1, . . . , k. By symmetry, we must also have

Ai ∩ (A0 ∪B0 ∪ x0) 6= /0

for all i = 1, . . . , k.
Now, if Bk−1 ∩C0 = /0 were to hold, the quadruple a0, Bk, Bk−1 ∩Ak, Ak−1 would

form a quadruple of the kind considered above, with C0 ⊆Ak−1. So, by our choice of C0,
we must have Ak−1 =C0 or Bk−1∩C0 6= /0. However, if Ak−1 =C0, then SAk−1∪a0 = {C0∪
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a0, x0 ∪ (A0 − a0)∪B0}, SC0∪x0 = {C0 ∪ x0, A0 ∪B0}, and SA0∪x0 = {A0 ∪ x0, B0 ∪C0}
would form an incompatible triple of splits in S. So, we must have Bk−1 ∩C0 6= /0 and,
hence, Bi ∩C0 6= /0 for all i = 1, . . . , k− 1. By symmetry, also A2 ∩C0 6= /0 must hold
and, hence, Ai ∩C0 6= /0 for all i = 2, . . . , k.

Finally, we note that i ∈ {2, . . . , k} implies Ai−1∩C0 = /0 or Bi∩C0 = /0 because the
three splits

SBi−1 = SAi−1∪a0 = {Ai−1∪a0, Bi−1},

SAi = SBi∪a0 = {Ai, Bi ∪a0},

and
SC0 = {C0, A0 ∪B0 ∪ x0}

would form an incompatible triple. In view of A2 ∩C0 6= /0 and Bk−1 ∩C0 6= /0, this
implies B3∩C0 = /0 as well as Ak−2∩C0 = /0 and hence, in particular, k ≤ 3 as claimed.

4. Proof of Theorem 1.2

To establish Theorem 1.2, we also proceed by induction with respect to #X , noting as
above that — in view of the results obtained in [1] — Theorem 1.2 clearly holds in case
4 ≤ #X ≤ 5. So, using the notations and arguments from the previous section, we must
have k = 3, B3 ∩C0 = /0, and A1 ∩C0 = /0. Moreover, assuming that — without loss of
generality — x0 ∈ A2 holds, we may assume that — with n := #X −1 ≥ 5 — we have
a0 = [n] = {1, . . . , n} and S′ := S|a0 is a subset of

S∗ := {{{i, i+1, . . . , j−1}, [n]−{i, i+1, . . . , j−1}} : 1 ≤ i < j ≤ n},

that is, it is a subset of the standard cyclic split system on {1, . . . , n}.
In addition, we may assume that

x0 = n, A0 −a0 = {1, . . . , i0 −1}, B0 = {i0, . . . , j0 −1}, C0 = { j0, . . . , n−1},

and
B2 = {l0, l0 +1, . . . , k0 −1}

holds for some i0, j0, l0, k0 ∈ {1, . . . , n} with 1 ≤ i0 < j0 < n− 1 and 1 ≤ l0 < j0 <
k0 < n. And, using these notations, we must also have

A1 ⊆ A2 ∩C0 = {n}∪{1, . . . , l0 −1}

and
B3 ⊆ B2 ∩C0 = {l0, . . . , j0 −1}.

We now recall from [2] that every cyclic 2-compatible split system S′ ⊆ S∗ with S′ =
4n−10 contains all splits of the form {{i, i+1}, [n]−{i, i+1}} (i = 1, . . . , n) and that
every set C with {C, [n]−C} ∈ S′ and #C ≥ 3 contains a subset C′ with #C′ = 3 and
{C′, [n]−C′} ∈ S′.
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Consequently, there is some m0 ∈C0 with m0 +2 ≤ n−1 and the splits

{{m0, m0 +1, m0 +2}, [n]−{m0, m0 +1, m0 +2}},

{{m0, m0 +1}, [n]−{m0, m0 +1}},

and
{{m0 +1, m0 +2}, [n]−{m0 +1, m0 +2}}

are all contained in S′. Clearly, the corresponding splits in S all must be of the form
S{m0,m0+1,m0+2}, S{m0,m0+1}, and S{m0+1,m0+2} because every split of the form SC∪a0

( /0 ⊂ C ⊆ C0) forms an incompatible triple of splits together with SA1∪a0 and SB3∪a0

in view of B3 ∩C0 = /0 and A1 ∩C0 = /0. This, however, provides us with a quadru-
ple m0, {m0 + 1}, {m0 + 2}, X −{m0, m0 + 1, m0 + 2} of the kind considered in the
beginning of Section 3 and, hence, it implies #A0 = #B0 = 1, that is, A0 = {a0},
i0 = 1, j0 = 2, l0 = 1,A1 = {n}, and B0 = B3 = {1}.

With a0 := 0, it is now easy to see that S must be contained in the cyclic split system

{{{i, i+1, . . . , j−1},{0, . . . , i−1}∪{ j, . . . , n}} : 0 ≤ i < j ≤ n}.

Indeed, both of the two extensions of {A1, B1},{A2, B2}, and {A3, B3} clearly belong
to this split system in view of n ∈ A1 ⊆ A2 ⊆ A3 and 1 ∈ B3 ⊆ B2 ⊆ B1. And the unique
extension S ∈ S of every other split

{{i, i+1, . . . , j−1},{[n]−{i, i+1, . . . , j−1}} (1 ≤ i < j ≤ n)

in S′ must also be of this form: This is trivially so in case i = 1. And in case i > 1, we
cannot have

{{0}∪{i, i+1, . . . , j−1}, [n]−{i, i+1, . . . , j−1}} ∈ S

because this split forms an incompatible triple together with

{{0, 1},{2, . . . , n}}= SA0∪B0

and
{{1, . . . , n−1},{n, 0}}= SA0∪x0

in view of 2 ≤ i ≤ n−1,

0, i ∈ {0}∪{i, i+1, . . . , j−1},

and

1, n ∈ [n]−{i, i+1, . . . , j−1}.
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