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Abstract. We show that the maximal number K> (n) of splits in a 2-compatible split system on
an n-set is exactly 4n — 10, for every n > 3.

Since K, (n) = CF3(n)/2 where CF3(n) is the maximal number of members in any 3-cross-
free collection of (proper) subsets of an n-set, this gives a definitive answer to a question raised
in 1979 by A. Karzanov who asked whether CF3(n) is, as a function of n, of type O(n).

Karzanov’s question was answered first by P. Pevzner in 1987 who showed K;(n) < 6n, a
result that was improved by T. Fleiner in 1998 who showed K> (n) < 5n.

The argument given in the paper below establishes that the even slightly stronger inequality
K>(n) < 4n —10 holds for every n > 3; the identity K»(n) = 4n— 10 (n > 3) then follows in
conjunction with a result from a previous paper that implies K () > 4n — 10.

In that paper, it was also mentioned that — in analogy to well known results regarding
maximal weakly compatible split systems — 2-compatible split systems of maximal cardinality
4n — 10 should be expected to be cyclic. Luckily, our approach here permits us also to corroborate
this expectation. As a consequence, it is now possible to generate all 2-compatible split systems
on an n-set (n > 3) that have maximal cardinality 4n — 10 (or, equivalently, all 3-cross-free set
systems that have maximal cardinality 8n — 20) in a straight forward, systematic manner.
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1. Introduction

In this paper, we study a problem raised by A. Karzanov in 1979, viz. his conjecture that
the cardinality of any 3-cross-free collection of subsets of an n-set is bounded linearly
by n (cf. [4]).

As this conjecture can be rephrased very conveniently using the language of split
theory (cf. [1]), we begin by briefly recalling some of the basic terminology of that
theory: A splir S = {A, B} of a set X is a bipartition of X into two sets A, B; in particular,
we have B =A := X —A. We denote by S(X) the set of all splits of X; any subset S
of S(X) is called a split system (defined on X). Two splits S, S" of a set X are called
compatible if there exist subsets A € S and A’ € §' with ANA’ = 0, otherwise S and
S are called incompatible. We call a split system S C S(X) 2-compatible if it does
not contain an incompatible triple of splits, that is, a subset of 3 pairwise incompatible
splits. More generally, a split system S C S(X) is defined to be k-compatible if it does
not contain a subset of k+ 1 pairwise incompatible splits.

At the end of the seventies, due newly discovered results on multicommodity flow
problems such as those appearing in [4,5], it became of increasing interest to determine
upper bounds for the cardinality of a k-compatible split system S C S(X), defined on an
n-set X. It is well known that every maximal 1-compatible split system contains exactly
2n — 3 distinct splits, and it was observed by M. Lomonosov that

kn  k
BS<nt 4 e

)+ Lnk/nZJ < n(1+klog,(n))

always holds for a k-compatible split system defined on an n-set (see [2] for the simple
proof of this inequality).

A. Karzanov conjectured that there is some universal constant ¢ so that #S < cn
holds for any 2-compatible split system S defined on an n-set X. In [6], P. Pevzner®
showed #S < 6n, a result that was subsequently improved to #S < 5n by T. Fleiner
in [3]. All of these results were stated in terms of 3-cross-free families; however, they
can easily be translated into the terminology of split systems, and vice-versa.

In [2], a simple construction was given, for each n-set with n > 3, that yields max-
imal 2-compatible split systems S with #S = 4n — 10 that are, in addition, cyclic i.e.
there exists a bijection

o: [n]:={1,....n} =X (n:=#X)
such that S is contained in the split system S(¢) consisting of all splits S of the form

{{¢(l)7 ¢(l+ 1)7"'7¢(j_ 1)}7 {¢(l)7 ¢(i+ 1)""7¢(j_ 1)}}a

with 1 <i < j <n. It was also shown there that every maximal 2-compatible cyclic
split system S can be constructed in this way and, hence, must have cardinality 4n —
10. Based on these observations, it was then conjectured that — in analogy to well
known results regarding maximal weakly compatible split systems (cf. [1]) — every

$In [3], a possible flaw in Pevzner’s argument — probably due to poor translation — is pointed
out.
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2-compatible split system of maximal cardinality should be of this form®. And it was
observed in this context that indeed — as a consequence of results obtained in [1] —
this is true in case for 4 < #X < 5 thus “explaining” the formula 4n — 10 as the “linear
extrapolation” of the values obtained forn =4 and n = 5.

The following two theorems establish this conjecture from [2], thus providing —
in conjunction with results from [2] — a definitive answer to A. Karzanov’s question
described above:

Theorem 1.1. The cardinality of any 2-compatible split system defined on a set X of
cardinality #X :=n > 3 is bounded by 4n — 10.

Theorem 1.2. Every 2-compatible split system S defined on a set X of cardinality #X :=
n > 3 is cyclic provided it has maximal cardinality #S = 4n — 10.

Finally, we want to point out that the key fact on which the proof of Theorem 1.1 is
based, is the (non-)existence of certain configurations of splits in maximal 2-compatible
split-systems (see Section 3). The discovery of these configurations was motivated, in
part, by the existence of similar configurations in 3-compatible cyclic split systems
(cf. [2, Section 5]).

2. Preliminary Results

We begin this section by introducing some further notation from split theory. Suppose
that X is a finite set. For every proper subset A of X, we denote by S4 the split Sy :=
{A,A}, induced by A. Whenever a subset A of X consists of one element x € X only, we
may also write ‘x” instead of ‘{x}” as long as no confusion can arise. In particular, we
will write x instead of {x} and S, = {x, x} instead of Syy = {{x}, {x}}, forevery x € X.
For every element x € X and every split S € S(X), we denote by S(x) the subset, A or B,
in S that contains x, and by S(x), we denote its complement S(x) := S(x) = X — S(x).

Now, given an element x € X, a pair of splits S;, S» € S(X) is called an x-pair if
S1(x)NS2(x) = {x} and S} (x) US2(x) = X hold. Note that every x-pair consists of two
distinct compatible splits. Moreover, a pair S, S, of splits from S(X) forms an x-pair
if and only if there exists a split S = {A, B} € S(x) = S(X —x) — uniquely determined
by S and S, — so that

{81,8,} =85:={{AUx, B}, {A,BUx}}

holds. Next, given a split system S C S(X) and a subset Y of X, define the restriction
S|y of S onto Y by

Sly:={{A,B} €S(Y): {A,B} ={CNY,DNY} for some {C, D} € S},
and note that, for every S C S(X) and x € X, the number
#(S —{Sx}) —#S|;

LUN split system S C S(X) is called weakly compatible if there exist no four elements xo, x1, X2, x3 € X and
three splits Sy, S2, S3 € S with “S;(xo) = Si(xj) <= i=j"foralli, j € {1,2,3}.
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coincides exactly with the cardinality p,(S) := #S" of the set S* consisting of all x-pairs
in S. This follows as {A — x, B—x} is a split in S(x) for every split S € S(X) — {Sx},
and we have {A —x, B—x} = {A’ —x, B’ — x} for two distinct splits {A, B},{A’, B’} in
S(X) if and only if these two splits form an x-pair.

Hence, to prove Theorem 1.1, all we need to show is that there exists, for every
2-compatible split system S C S(X), some x € X with p,(S) < 3 because, by induction
with respect to #X, this would imply

#S < #{S.} +#S|+ p.(S)
1+ (4(#X —1)—10)+3

IN

4#X — 10.

Thus, in order to prove Theorem 1.1, we need to study x-pairs in 2-compatible
split systems. To this end, we begin by noting that for any two splits S, S’ € S(X), the
following assertions are equivalent:

(i) Sand S’ are incompatible,

(i) AcSandA’ €S imply ANA,ANA,ANA, ANA’ 0,

(i) A€ Sand A’ € §' imply ANA’ £ 0,

(iv) there is some A € S that is neither contained in — nor contains — any A’ € §,
(v) no A € § is either contained in — or contains — any A’ € §'.

Moreover, defining two collections of splits S’, §” C S(X) to be (in)compatible if
any two splits ', §” with S’ € S and §” € S” are (in)compatible, we observe

Lemma 2.1. If x € X, and U and V are two distinct splits from S(x), then the two
corresponding x-pairs U and V are incompatible if U and V are incompatible while,
otherwise, there exists exactly one pair Uy, Vi of incompatible splits with U, € U and
VieV.

In particular, every split S in the restriction S|, of any 2-compatible split system S
that contains the two x-pairs U and V must be compatible with U or with V.

Proof. The first statement is obvious. To prove the second, assume U = {A, B}, V =
{A’,B'}, and ANA’ = 0. Then, we have U = {{AUx, B},{A,BUx}} and V = {{A’U
x,B'},{A’, B'Ux}} and, clearly, of these four splits only {AUx, B} and {A’ Ux, B'} are
incompatible.

As a consequence of this lemma, we see that two distinct x-pairs can never be com-
patible; if they are not incompatible, we call them semi-compatible.

Proposition 2.2. Suppose that S C S(X) is a 2-compatible split system, and that U, V,
W C S are three distinct x-pairs for some x € X. If U is semi-compatible with V, and
V is semi-compatible with W, then U is semi-compatible with ‘W.

Proof. Choose splits U, V, W € S(x) with U = U, V=V, and W =W, and assume
that U and W are incompatible. Choose A € U and A’ € V with ANA’ = 0, and choose
A" cW withA” CA’ orA’ CA”. Then, A’ C A” must hold because, otherwise, we would
have A”NA C A’NA = 0. However, in this case, the three splits Sy = {AUx, AUx} €
U, Sy ={A", A"} € W, and Sy, = {A'Ux, A’ Ux} € ¥ would form an incompatible
triple of splits in S.
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Proposition 2.2 in turn implies

Proposition 2.3. If S C S(X) is a 2-compatible split system and if x € X is any element
of X, then either there exist exactly two x-pairs that are incompatible, or any two x-pairs
are semi-compatible and there exists a sequence S| = {A1, B1}, S2 ={A2, B2},..., Sk =
{Ay, By} of splits of x with Ay C A C -+ C Ay (and hence By D By D -++ D By) so that

={Si:i=1,....k}
holds.

Proof. If U,V, and W were three distinct x-pairs from S so that U and ¥ are incom-
patible, then either 1 and W or U and W would have to be incompatible too, in view
of Proposition 2.2. So, assume that %/ and ‘W were incompatible. Choose U; € U and
Wi € W according to Lemma 2.1 so that U; and W; are incompatible. Then, Uy, Wy, V
would form an incompatible triple of splits in S, for every split V € ¥/, which is clearly
a contradiction.

So, assume now that all x-pairs in S* are semi-compatible. All we need to show
then is that, given some A C x with Sy, Saux € S”, the set A of subsets A’ C x with
Sy €S*and A’ C A or A C A’ is linearly ordered. If not, there would exist Aj, A, € 4
with AjNA; # A, Ay and either Aj, Ay CAorA C Ay, As.

In the first case, we must have A| NA> = 0, and Sa,ux = {A1 Ux, A; Ux}, Sapux =
{A2Ux, A2 Ux} and Sq = {A, A} would form an incompatible triple of splits in S be-
cause Sa,uy is clearly not compatible with S4,uy, and A neither contains — nor is con-
tained in — either of Ay Ux, A; Ux, Ao Ux, or A Ux.

In the second case, we must have Aj UA> = x, and Sp, = {A1, A1}, Sa, = {A2, A2},
and Sauy = {AUx, AUx} would form an incompatible triple of splits in S because, now,
Sa, and Sy, are incompatible and A U x neither contains — nor is contained in — either
OfAl,Al, Az, OrAz.

It follows from this proposition and the discussion above that no 2-compatible split
system S C S(X) with #S > 4#X — 10, #X > 5, can contain a pair of incompatible x-
pairs, for any x € X provided Theorem 1.1 holds for 2-compatible split systems defined
on an n-set with n < #X.

3. Proof of Theorem 1.1

It is now straight forward to establish Theorem 1.1 by induction noting that, for obvi-
ous reasons, it holds for 4 < #X < 5. So, assume #X > 5 and that our theorem holds
for 2-compatible split systems defined on an n-set with n < #X. We consider quadru-
ples x, A, B, C consisting of an element x € X and a partition {A, B, C} of x into three
disjoint, non-empty sets so that Sauy, Saup = Scux. and Saupux = Sc all belong to S.
Clearly, such quadruples must exist in case #S > 44#X — 10 because any pair {Al, B}
and {Az, By} of semi-compatible x-pairs {Al, B}, {Az, By} € §* with, say, A| C A
gives rise to such a quadruple, viz. x, A1, A» — Ay, Bs.

Among all such quadruples, choose one, say xo, Ag, By, and Cp, for which Cy is
maximal.
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Note — for further use in the next section — that 2#Cy > #X — 1 must hold in
case #S > 4#X — 10 because, given any triple 51 = {Al, Bi}, 2 ={A, By}, and S5 =
{A3, B3} of xo-splits with A| C Ay C A3 and Sl, Sg, Sy € 8%, A, as well as B, could
serve as Cp and, because #A, +#B, = #X — 1, the larger one of these two candidates for
Co must have cardinality at least é(#X —1). So, the maximal Cyp must also have at least
this cardinality that, in view of #X > 5, is at least 2;. So, #Cp > 2 must hold.

Next, consider an arbitrary element ag € Ag. Choose S| = {Ay, B1 }, S» = {A2, B2},

L SE= {Ak, Bk} in S(a()) withAy CAp, C--- C Ay and
SO ={S;:i=1,...,k}

Then all we need to establish is that £ < 3 must hold.
To this end, we observe first that B; N (A9 UByUxp) # 0 must hold foralli=1,..., k
because, otherwise, we would have B; C Cjy and

AgUBoUxg=Co C B; =agUA;,
that is, A9 C ag UA;, Bo C A;, and xg € A;; so the three splits
Sa; = {Ai, BiUao}, Sagus, = {A0UBo, CoUxo}, Sagux, = {AoUxo, BoUCo}
would form an incompatible triple of splits in S in view of
By CA;N(AgUBy),
xp € A;N(CoUxp),
ap € (BiUap) N (AgUBy),

B; C (BiUag) N (CoUx),
X0 EA,‘ﬂ(AQ U)C()),

By CA;N (B()UC()),
ap € (BiUap) N (AgUxop),

and
B; C (Bi Ua()) n (B()UC()).
So, we must have
BN (AQ UBy U)C()) #0

foralli=1,..., k. By symmetry, we must also have
A;N(AgUByUxp) £ 0

foralli=1,... k.

Now, if By NCy = 0 were to hold, the quadruple ag, By, Br—1 NAg, Ax—1 would
form a quadruple of the kind considered above, with Co C Ax_1. So, by our choice of Cy,
we must have Ay_1 = Cp or By_1 NCy # 0. However, if Ay_1 = Cy, then Sx, ,uq, = {CouU
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aop, xo U (AQ - ao) UB()}, SCgUxo = {C() Uxg, Ao UB()}, and SAOUXO = {A() Uxg, BoU C()}
would form an incompatible triple of splits in S. So, we must have B;_; NCy # 0 and,
hence, BiNCy # 0 for all i = 1,..., k— 1. By symmetry, also A, NCp # 0 must hold
and, hence, A;NCy # 0 foralli=2,... k.

Finally, we note that i € {2,..., k} implies A;_; NCy = 0 or B;NCp = 0 because the
three splits

SB,',l = SA,‘,[UGO = {A[71 UaOa Bl‘*l}u
Sa; = SBjuay = {Ai, BiUag},
and
Sc, = {Co, AgUByUxp}

would form an incompatible triple. In view of Ax NCy # 0 and By_; NCp # 0, this
implies B3 NCy = @ as well as A;_» NCp = 0 and hence, in particular, k < 3 as claimed.

4. Proof of Theorem 1.2

To establish Theorem 1.2, we also proceed by induction with respect to #X, noting as
above that — in view of the results obtained in [1] — Theorem 1.2 clearly holds in case
4 <#X <5. So, using the notations and arguments from the previous section, we must
have k =3, B3NCy =0, and A| NCy = 0. Moreover, assuming that — without loss of
generality — xo € A, holds, we may assume that — with n:=#X — 1 > 5 — we have
ao=[n]={1,...,n} and S' := §|,, is a subset of

S ={{{ii+1,....j—1},[n] = {i,i+1,...,j—1}}: 1 <i<j<n},

that is, it is a subset of the standard cyclic split system on {1,..., n}.
In addition, we may assume that

Xo =n, A()—a():{1,...,1'0—1},B():{l'(),...,j()—l}7 C():{j(),...,n—l},
and
Bzz{lo,lo+17...7k0—1}
holds for some iy, jo, lp, ko € {1,...,n} with 1 <ip < jo<n—land 1 <ly < jo <
ko < n. And, using these notations, we must also have
Ay gAsz():{n}U{l,...,lo—l}
and
B3 CB,NCy={lp,..., jo—1}.

We now recall from [2] that every cyclic 2-compatible split system S’ C §* with §' =
4n— 10 contains all splits of the form {{i, i+ 1}, [n] — {i,i+1}} (i=1,..., n) and that
every set C with {C, [n] — C} € §' and #C > 3 contains a subset C’ with #C' = 3 and
{C',[n]-C"} S
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Consequently, there is some mg € Cp with mg+2 < n — 1 and the splits
{{m07 m0+ 17 mo +2}7 [l’l] - {mO; mo + 17 mo +2}}3

{{m()v mo + 1}7 [n] - {m07 mo + 1}},

and
{{m0+17m0+2}, [n] —{MQ+ 1,mo+2}}

are all contained in §’. Clearly, the corresponding splits in S all must be of the form
Stmg,mo+1,mo+2}> S{mg.mo+1}> AN S0 11 my+2) because every split of the form Scuq,
(0 C C C () forms an incompatible triple of splits together with S4,uq, and Sp,uq,
in view of B3N Cyp =0 and A NCyp = 0. This, however, provides us with a quadru-
ple mo, {mo+ 1}, {mo+2}, X — {mo, mo + 1, mg+ 2} of the kind considered in the
beginning of Section 3 and, hence, it implies #4o = #By = 1, that is, A9 = {ao},
io=1,jo=2,lp =1,Ay = {n}, and B) = B3 = {1}.

With ag := 0, it is now easy to see that S must be contained in the cyclic split system

(Lt 1, j— 13,40, i—1}U{j,...,n}}: 0<i< j<n).

Indeed, both of the two extensions of {A1, B;},{A2, B>}, and {A3, B3} clearly belong
to this split system in view of n € A} C Ay C Az and 1 € B3 C B, C B;. And the unique
extension S € S of every other split

{iit 1, j— 13 = {ii+1,...,j—1}} (1<i<j<n)

in S’ must also be of this form: This is trivially so in case i = 1. And in case i > 1, we
cannot have

{{oyu{i,i+1,...,j— 1}, [n] - {i,i+1,...,j—1}} €S
because this split forms an incompatible triple together with

{{0, 1}7 {27 R n}} = SAOUBO

and
{1, n—=1},{n,0}} = Sagux,

inviewof2<i<n-—1,

0,i e {0}U{i,i+1,...,j—1},
and

Lnen]—{i,i+1,...,j—1}.
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